首页> 外文OA文献 >Improved gas source localization with a mobile robot by learning analytical gas dispersal models from statistical gas distribution maps using evolutionary algorithms
【2h】

Improved gas source localization with a mobile robot by learning analytical gas dispersal models from statistical gas distribution maps using evolutionary algorithms

机译:通过使用进化算法从统计气体分布图中学习分析性气体扩散模型,从而改进了移动机器人的气源定位

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The method presented in this chapter computes an estimate of the location of a single gas sourcefrom a set of localised gas sensor measurements. The estimation process consists of three steps.First, a statistical model of the time-averaged gas distribution is estimated in the form of a two-dimensional grid map. In order to compute the gas distribution grid map the Kernel DM algorithm isapplied, which carries out spatial integration by convolving localised sensor readings and modelling theinformation content of the point measurements with a Gaussian kernel. The statistical gas distributiongrid map averages out the transitory effects of turbulence and converges to a representation of thetime-averaged spatial distribution of a target gas. The second step is to learn the parameters ofan analytical model of average gas distribution. Learning is achieved by nonlinear least squaresfitting of the analytical model to the statistical gas distribution map using Evolution Strategies (ES),which are a special type of Evolutionary Algorithms (EA). This step provides an analysis of thestatistical gas distribution map regarding the airflow conditions and an alternative estimate of thegas source location, i.e. the location predicted by the analytical model in addition to the location ofthe maximum in the statistical gas distribution map. In the third step, an improved estimate of thegas source position can then be derived by considering the maximum in the statistical gas distributionmap, the best fit as well as the corresponding fitness value. Different methods to select the mosttruthful estimate are introduced and a comparison regarding their accuracy is presented, based on atotal of 34 hours of gas distribution mapping experiments with a mobile robot. This chapter is anextended version of a paper by the authors (Lilienthal et al. [2005]).
机译:本章介绍的方法根据一组局部的气体传感器测量值来计算单个气体源的位置估计值。估算过程包括三个步骤:首先,以二维网格图的形式估算时间平均气体分布的统计模型。为了计算气体分布网格图,应用了Kernel DM算法,该算法通过对局部传感器读数进行卷积并使用高斯核对点测量的信息内容进行建模来进行空间集成。统计的气体分布网格图将湍流的短暂影响平均化,并收敛到目标气体的时间平均空间分布表示。第二步是学习平均气体分布分析模型的参数。学习是通过使用演化策略(ES)将分析模型与统计气体分布图进行非线性最小二乘拟合来完成的,演化策略是一种特殊的进化算法(EA)。该步骤提供了关于气流条件的统计气体分布图的分析以及气源位置的替代估计,即除了统计气体分布图中的最大值位置以外,由分析模型预测的位置。在第三步中,然后可以通过考虑统计气体分布图中的最大值,最佳拟合以及相应的适用性值来得出对气源位置的改进估算。基于使用移动机器人进行的总共34个小时的气体分布制图实验,介绍了选择最真实估计的不同方法,并给出了关于其准确性的比较。本章是作者论文的扩展版本(Lilienthal等人,2005年)。

著录项

  • 作者

    Lilienthal, Achim J.;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号